2022年高考数学甲卷-理21 |
|
2022-12-16 17:38:30 |
|
(12分)已知函数f(x)=exx−lnx+x−a. (1)若f(x)⩾0,求a的取值范围; (2)证明:若f(x)有两个零点x1,x2,则x1x2<1. 分析:(1)对函数求导研究其在定义域内单调性,由于函数在(0,+∞)恒大于等于0,故f(x)min=f(1)=e+1−a>0,解出a的范围即可. (2)首先将原不等式转化为证明1<x2<1x1,再利用函数f(x)在(1,+∞)单调递增,即转化为证明f(x2)<f(1x1)⇔f(x1)<f(1x1),继而构造函数h(x)=f(x)−f(1x)证明其在(0,1)恒小于0即可. 解答:解:(1)f(x)的定义域为(0,+∞),f′(x)=ex(x−1)x2−1x+1=(ex+x)(x−1)x2, 令f′(x)>0,解得x>1,故函数f(x)在(0,1)单调递减,(1,+∞)单调递增, 故f(x)min=f(1)=e+1−a,要使得f(x)⩾0恒成立,仅需e+1−a⩾0, 故a⩽e+1,故a的取值范围是(−∞,e+1]; (2)证明:由已知有函数f(x)要有两个零点,故f(1)=e+1−a<0,即a>e+1, 不妨设0<x1<1<x2,要证明x1x2<1,即证明x2<1x1, ∵,\therefore\dfrac{1}{{x}_{1}} > 1, 即证明:1 < {x}_{2} < \dfrac{1}{{x}_{1}},又因为f(x)在(1,+\infty )单调递增, 即证明:f({x}_{2}) < f(\dfrac{1}{{x}_{1}})\Leftrightarrowf({x}_{1}) < f(\dfrac{1}{{x}_{1}}), 构造函数h(x)=f(x)-f(\dfrac{1}{x}),0 < x < 1, h\prime (x)=f\prime (x)+\dfrac{1}{{x}^{2}}f\prime (\dfrac{1}{x})=\dfrac{(x-1)({e}^{x}+x-x{e}^{\dfrac{1}{x}}-1)}{{x}^{2}}, 构造函数m(x)={e}^{x}+x-x{e}^{\dfrac{1}{x}}-1, m\prime (x)={e}^{x}+1-{e}^{\dfrac{1}{x}}(1-\dfrac{1}{x}),因为0 < x < 1,所以1-\dfrac{1}{x} < 0, 故m\prime (x) > 0在(0,1)恒成立,故m(x)在(0,1)单调递增, 故m(x) < m(1)=0 又因为x-1 < 0,故h\prime (x) > 0在(0,1)恒成立,故h(x)在(0,1)单调递增, 又因为h(1)=0,故h(x) < h(1)=0, 故f({x}_{1}) < f(\dfrac{1}{{x}_{1}}),即x_{1}x_{2} < 1.得证. 解答:本题主要考查利用导函数研究函数单调性,即构造函数证明不等式恒成立问题,属于较难题目.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgjl/2022-12-16/33442.html |