三、解答题
17.(本小题满分12分)
已知函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在区间
上的最小值和最大值.
18.(本小题满分12分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和
4个黑球.现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设为取出的4个球中红球的个数,求
的分布列和数学期望.
19.(本小题满分12分)
如图,在四棱锥中,
底面
,
,
,
是
的中点.
(Ⅰ)证明
;
(Ⅱ)证明平面
;
(Ⅲ)求二面角的大小.
20.(本小题满分12分)
已知函数,其中
.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)当时,求函数
的单调区间与极值.
21.(本小题满分14分)
在数列中,
,其中
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前
项和
;
(Ⅲ)证明存在,使得
对任意
均成立.
22.(本小题满分14分)
设椭圆的左、右焦点分别为
是椭圆上的一点,
,
原点到直线
的距离为
.
(Ⅰ)证明;
(Ⅱ)设为椭圆上的两个动点,
,过原点
作直线
的垂线
,
垂足为,求点
的轨迹方程.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。