解答题
17、(本题满分12分)
已知复数z1满足(1+i)z1=-1+5i, z2=a-2-i, 其中i为虚数单位,
a∈R,
若<
,求a的取值范围.
18、(本题满分12分)
某单位用木料制作如图所示的框架,
框架的下部是边长分别为
x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2.
问x、y分别为多少(精确到0.001m) 时用料最省?
19、(本题满分14分) 第1小题满分6分, 第2小题满分8分
记函数f(x)=的定义域为A,
g(x)=lg[(x-a-1)(2a-x)](a<1)
的定义域为B.
(1) 求A;
(2)
若BA,
求实数a的取值范围.
20、(本题满分14分) 第1小题满分6分, 第2小题满分8分
已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数
y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).
(1) 求函数f(x)的表达式;
(2) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.
21、(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分
如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上
的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.
(棱长和是指多面体中所有棱的长度之和)
(1) 证明:P-ABC为正四面体;
(2)
若PD=PA,
求二面角D-BC-A的
大小;(结果用反三角函数值表示)
(3) 设棱台DEF-ABC的体积为V, 是
否存在体积为V且各棱长均相等的直
平行六面体,使得它与棱台DEF-ABC
有相同的棱长和? 若存在,请具体构造
出这样的一个直平行六面体,并给出证
明;若不存在,请说明理由.
22、(本题满分18分) 第1小题满分6分, 第2小题满分4分, 第3小题满分8分
设P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲线C上
的点,
且a1=2,
a2=
2,
…, an=
2构成了一个公差为d(d≠0)
的
等差数列, 其中O是坐标原点. 记Sn=a1+a2+…+an.
(1)
若C的方程为=1,n=3.
点P1(3,0)
及S3=255,
求点P3的坐标;
(只需写出一个)
(2)若C的方程为(a>b>0).
点P1(a,0),
对于给定的自然数n,
当公
差d变化时, 求Sn的最小值;
. (3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,
写出符合条件的点P1, P2,…Pn存在的充要条件,并说明理由.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。